Large Scale Sparse Singular Value Computations
نویسنده
چکیده
In this paper, we present four numerical methods for computing the singular value decomposition (SVD) of large sparse matrices on a multiprocessor architecture. We particularly emphasize Lanczos and subspace iteration-based methods for determining several of the largest singular triplets (singular values and corresponding left-and right-singular vectors) for sparse matrices arising from two practical applications: information retrieval and seismic reeection tomography. The target architectures for our implementations of such methods are the Cray-2S/4-128 and Alliant FX/80. The sparse SVD problem is well motivated by recent information-retrieval techniques in which dominant singular values and their corresponding singular vectors of large sparse term-document matrices are desired, and by nonlinear inverse problems from seismic tomography applications in which approximate pseudo-inverses of large sparse Jacobian matrices are needed. It is hoped that this research will advance the development of future out-of-core sparse SVD methods, which can be used, for example, to handle extremely large sparse matrices (O(10 6) rows or columns) associated with extremely large databases in query-based information retrieval applications.
منابع مشابه
Large-scale Inversion of Magnetic Data Using Golub-Kahan Bidiagonalization with Truncated Generalized Cross Validation for Regularization Parameter Estimation
In this paper a fast method for large-scale sparse inversion of magnetic data is considered. The L1-norm stabilizer is used to generate models with sharp and distinct interfaces. To deal with the non-linearity introduced by the L1-norm, a model-space iteratively reweighted least squares algorithm is used. The original model matrix is factorized using the Golub-Kahan bidiagonalization that proje...
متن کاملCAS WAVELET METHOD FOR THE NUMERICAL SOLUTION OF BOUNDARY INTEGRAL EQUATIONS WITH LOGARITHMIC SINGULAR KERNELS
In this paper, we present a computational method for solving boundary integral equations with loga-rithmic singular kernels which occur as reformulations of a boundary value problem for the Laplacian equation. Themethod is based on the use of the Galerkin method with CAS wavelets constructed on the unit interval as basis.This approach utilizes the non-uniform Gauss-Legendre quadrature rule for ...
متن کاملAn Implicitly Restarted Lanczos Bidiagonalization Method for Computing Smallest Singular Triplets
We describe the development of a method for the efficient computation of the smallest singular values and corresponding vectors for large sparse matrices [4]. The method combines state-of-the-art techniques that make it a useful computational tool appropriate for large scale computations. The method relies upon Lanczos bidiagonalization (LBD) with partial reorthogonalization [6], enhanced with ...
متن کاملAdaptive Eigenvalue Computations Using Newton's Method on the Grassmann Manifold
We consider the problem of updating an invariant subspace of a Hermitian, large and struc-tured matrix when the matrix is modiied slightly. The problem can be formulated as that of computing stationary values of a certain function, with orthogonality constraints. The constraint is formulated as the requirement that the solution must be on the Grassmann manifold, and Newton's method on the manif...
متن کاملHigh-Performance Algorithms for Large-Scale Singular Value Problems and Big Data Applications
As ”big data” has increasing influence on our daily life and research activities, it poses significant challenges on various research areas. Some applications often demand a fast solution of large, sparse singular value problems; In other applications, extracting knowledge from large-scale data requires many techniques such as statistical calculations, data mining, and high performance computin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1992